Visual Servoing Platform version 3.6.0
Loading...
Searching...
No Matches
vpCircle.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See https://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * Visual feature circle.
33 *
34*****************************************************************************/
35
36#include <visp3/core/vpCircle.h>
37
38#include <visp3/core/vpFeatureDisplay.h>
39
41{
42 oP.resize(7);
43 cP.resize(7);
44
45 p.resize(5);
46}
47
57void vpCircle::setWorldCoordinates(const vpColVector &oP_) { this->oP = oP_; }
58
69void vpCircle::setWorldCoordinates(double oA, double oB, double oC, double oX, double oY, double oZ, double R)
70{
71 oP[0] = oA;
72 oP[1] = oB;
73 oP[2] = oC;
74 oP[3] = oX;
75 oP[4] = oY;
76 oP[5] = oZ;
77 oP[6] = R;
78}
79
84
97{
98 init();
100}
101
115vpCircle::vpCircle(double oA, double oB, double oC, double oX, double oY, double oZ, double R)
116{
117 init();
118 setWorldCoordinates(oA, oB, oC, oX, oY, oZ, R);
119}
120
125
138
158{
159 double det_threshold = 1e-10;
160 p_.resize(5, false);
161
162 vpColVector K(6);
163 {
164 double A = cP_[0];
165 double B = cP_[1];
166 double C = cP_[2];
167
168 double X0 = cP_[3];
169 double Y0 = cP_[4];
170 double Z0 = cP_[5];
171
172 double r = cP_[6];
173
174 // projection
175 double s = X0 * X0 + Y0 * Y0 + Z0 * Z0 - r * r;
176 double det = A * X0 + B * Y0 + C * Z0;
177 A = A / det;
178 B = B / det;
179 C = C / det;
180
181 K[0] = 1 - 2 * A * X0 + A * A * s;
182 K[1] = 1 - 2 * B * Y0 + B * B * s;
183 K[2] = -A * Y0 - B * X0 + A * B * s;
184 K[3] = -C * X0 - A * Z0 + A * C * s;
185 K[4] = -C * Y0 - B * Z0 + B * C * s;
186 K[5] = 1 - 2 * C * Z0 + C * C * s;
187 }
188
189 double det = K[2] * K[2] - K[0] * K[1];
190 if (fabs(det) < det_threshold) {
191 throw(vpException(vpException::divideByZeroError, "Division by 0 in vpCircle::projection."));
192 }
193
194 double xc = (K[1] * K[3] - K[2] * K[4]) / det;
195 double yc = (K[0] * K[4] - K[2] * K[3]) / det;
196
197 double c = sqrt((K[0] - K[1]) * (K[0] - K[1]) + 4 * K[2] * K[2]);
198 double s = 2 * (K[0] * xc * xc + 2 * K[2] * xc * yc + K[1] * yc * yc - K[5]);
199
200 double A, B, E;
201
202 if (fabs(K[2]) < std::numeric_limits<double>::epsilon()) {
203 E = 0.0;
204 if (K[0] > K[1]) {
205 A = sqrt(s / (K[0] + K[1] + c));
206 B = sqrt(s / (K[0] + K[1] - c));
207 } else {
208 A = sqrt(s / (K[0] + K[1] - c));
209 B = sqrt(s / (K[0] + K[1] + c));
210 }
211 } else {
212 E = (K[1] - K[0] + c) / (2 * K[2]);
213 if (fabs(E) > 1.0) {
214 A = sqrt(s / (K[0] + K[1] + c));
215 B = sqrt(s / (K[0] + K[1] - c));
216 } else {
217 A = sqrt(s / (K[0] + K[1] - c));
218 B = sqrt(s / (K[0] + K[1] + c));
219 E = -1.0 / E;
220 }
221 }
222
223 // Chaumette PhD Thesis 1990, eq 2.72 divided by 4 since n_ij = mu_ij_chaumette_thesis / 4
224 det = 4 * (1.0 + vpMath::sqr(E));
225 double n20 = (vpMath::sqr(A) + vpMath::sqr(B * E)) / det;
226 double n11 = (vpMath::sqr(A) - vpMath::sqr(B)) * E / det;
227 double n02 = (vpMath::sqr(B) + vpMath::sqr(A * E)) / det;
228
229 p_[0] = xc;
230 p_[1] = yc;
231 p_[2] = n20;
232 p_[3] = n11;
233 p_[4] = n02;
234}
235
247{
248 noP.resize(7, false);
249
250 double A, B, C;
251 A = noMo[0][0] * oP[0] + noMo[0][1] * oP[1] + noMo[0][2] * oP[2];
252 B = noMo[1][0] * oP[0] + noMo[1][1] * oP[1] + noMo[1][2] * oP[2];
253 C = noMo[2][0] * oP[0] + noMo[2][1] * oP[1] + noMo[2][2] * oP[2];
254
255 double X0, Y0, Z0;
256 X0 = noMo[0][3] + noMo[0][0] * oP[3] + noMo[0][1] * oP[4] + noMo[0][2] * oP[5];
257 Y0 = noMo[1][3] + noMo[1][0] * oP[3] + noMo[1][1] * oP[4] + noMo[1][2] * oP[5];
258 Z0 = noMo[2][3] + noMo[2][0] * oP[3] + noMo[2][1] * oP[4] + noMo[2][2] * oP[5];
259 double R = oP[6];
260
261 noP[0] = A;
262 noP[1] = B;
263 noP[2] = C;
264
265 noP[3] = X0;
266 noP[4] = Y0;
267 noP[5] = Z0;
268
269 noP[6] = R;
270}
271
279{
280 double A, B, C;
281 A = cMo[0][0] * oP[0] + cMo[0][1] * oP[1] + cMo[0][2] * oP[2];
282 B = cMo[1][0] * oP[0] + cMo[1][1] * oP[1] + cMo[1][2] * oP[2];
283 C = cMo[2][0] * oP[0] + cMo[2][1] * oP[1] + cMo[2][2] * oP[2];
284
285 double X0, Y0, Z0;
286 X0 = cMo[0][3] + cMo[0][0] * oP[3] + cMo[0][1] * oP[4] + cMo[0][2] * oP[5];
287 Y0 = cMo[1][3] + cMo[1][0] * oP[3] + cMo[1][1] * oP[4] + cMo[1][2] * oP[5];
288 Z0 = cMo[2][3] + cMo[2][0] * oP[3] + cMo[2][1] * oP[4] + cMo[2][2] * oP[5];
289 double R = oP[6];
290
291 cP[0] = A;
292 cP[1] = B;
293 cP[2] = C;
294
295 cP[3] = X0;
296 cP[4] = Y0;
297 cP[5] = Z0;
298
299 cP[6] = R;
300}
301
312 unsigned int thickness)
313{
314 vpFeatureDisplay::displayEllipse(p[0], p[1], p[2], p[3], p[4], cam, I, color, thickness);
315}
316
326void vpCircle::display(const vpImage<vpRGBa> &I, const vpCameraParameters &cam, const vpColor &color,
327 unsigned int thickness)
328{
329 vpFeatureDisplay::displayEllipse(p[0], p[1], p[2], p[3], p[4], cam, I, color, thickness);
330}
331
344 const vpColor &color, unsigned int thickness)
345{
346 vpColVector _cP, _p;
347 changeFrame(cMo, _cP);
348 projection(_cP, _p);
349 vpFeatureDisplay::displayEllipse(_p[0], _p[1], _p[2], _p[3], _p[4], cam, I, color, thickness);
350}
351
364 const vpColor &color, unsigned int thickness)
365{
366 vpColVector _cP, _p;
367 changeFrame(cMo, _cP);
368 projection(_cP, _p);
369 vpFeatureDisplay::displayEllipse(_p[0], _p[1], _p[2], _p[3], _p[4], cam, I, color, thickness);
370}
371
374{
375 vpCircle *feature = new vpCircle(*this);
376 return feature;
377}
378
396void vpCircle::computeIntersectionPoint(const vpCircle &circle, const vpCameraParameters &cam, const double &rho,
397 const double &theta, double &i, double &j)
398{
399 // This was taken from the code of art-v1. (from the artCylinder class)
400 double px = cam.get_px();
401 double py = cam.get_py();
402 double u0 = cam.get_u0();
403 double v0 = cam.get_v0();
404
405 double n11 = circle.p[3];
406 double n02 = circle.p[4];
407 double n20 = circle.p[2];
408 double Xg = u0 + circle.p[0] * px;
409 double Yg = v0 + circle.p[1] * py;
410
411 // Find Intersection between line and ellipse in the image.
412
413 // Optimised calculation for X
414 double stheta = sin(theta);
415 double ctheta = cos(theta);
416 double sctheta = stheta * ctheta;
417 double m11yg = n11 * Yg;
418 double ctheta2 = vpMath::sqr(ctheta);
419 double m02xg = n02 * Xg;
420 double m11stheta = n11 * stheta;
421 j = ((n11 * Xg * sctheta - n20 * Yg * sctheta + n20 * rho * ctheta - m11yg + m11yg * ctheta2 + m02xg -
422 m02xg * ctheta2 + m11stheta * rho) /
423 (n20 * ctheta2 + 2.0 * m11stheta * ctheta + n02 - n02 * ctheta2));
424 // Optimised calculation for Y
425 double rhom02 = rho * n02;
426 double sctheta2 = stheta * ctheta2;
427 double ctheta3 = ctheta2 * ctheta;
428 i = (-(-rho * n11 * stheta * ctheta - rhom02 + rhom02 * ctheta2 + n11 * Xg * sctheta2 - n20 * Yg * sctheta2 -
429 ctheta * n11 * Yg + ctheta3 * n11 * Yg + ctheta * n02 * Xg - ctheta3 * n02 * Xg) /
430 (n20 * ctheta2 + 2.0 * n11 * stheta * ctheta + n02 - n02 * ctheta2) / stheta);
431}
Generic class defining intrinsic camera parameters.
Class that defines a 3D circle in the object frame and allows forward projection of a 3D circle in th...
Definition vpCircle.h:87
virtual ~vpCircle()
Definition vpCircle.cpp:124
vpCircle * duplicate() const
For memory issue (used by the vpServo class only)
Definition vpCircle.cpp:373
void changeFrame(const vpHomogeneousMatrix &noMo, vpColVector &noP) const
Definition vpCircle.cpp:246
void setWorldCoordinates(const vpColVector &oP)
Definition vpCircle.cpp:57
void display(const vpImage< unsigned char > &I, const vpCameraParameters &cam, const vpColor &color=vpColor::green, unsigned int thickness=1)
Definition vpCircle.cpp:311
void projection()
Definition vpCircle.cpp:137
static void computeIntersectionPoint(const vpCircle &circle, const vpCameraParameters &cam, const double &rho, const double &theta, double &i, double &j)
Definition vpCircle.cpp:396
void init()
Definition vpCircle.cpp:40
Implementation of column vector and the associated operations.
void resize(unsigned int i, bool flagNullify=true)
Class to define RGB colors available for display functionalities.
Definition vpColor.h:152
error that can be emitted by ViSP classes.
Definition vpException.h:59
@ divideByZeroError
Division by zero.
Definition vpException.h:82
static void displayEllipse(double x, double y, double n20, double n11, double n02, const vpCameraParameters &cam, const vpImage< unsigned char > &I, const vpColor &color=vpColor::green, unsigned int thickness=1)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Definition of the vpImage class member functions.
Definition vpImage.h:135
static double sqr(double x)
Definition vpMath.h:124
vpColVector cP
Definition vpTracker.h:72
vpColVector p
Definition vpTracker.h:68